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1. Foundations 

Minimal foundations lead to fewer free variables, and 
reduce assumptions. Symmetries found in these 
foundations may then describe wider ontologies. In this 
work, we explore a simple model. 

Our simplest entity is a wave on just one basis axis, ܾ [1, 3–7]. The waves propagate in bound pairs, as 
oscillators: these are fundamental bosons, constituting 
all matter and energy. All waves propagate at the same 
rate, both in terms of phase ߮ and space ݎ traversed: ݀ݎ = ݀߮. 

 
Figure 1.  Boson Structure. 

This structure gives properties: A boson’s energy is 
scalar, and is invariant (conserved) while it propagates. 
In Euclidean space, these are spherically symmetrical 
expanding impulses where ݀ߩ/݀߮ = 0. Intrinsic mass-
energy ߩ (fig.1) is the cosine of the phase difference 
between a reference wave having phase ߮ۯ and its 
entangled vacuum partner having phase ߮۰: 

ߩܾ−  = −ܾ cosሺ߮۰ − ሻۯ߮ = −ܾ	݁ି௜ሺఝ۰ିఝۯሻ (1) 

with the field being the gradient of the flux density of 
the mass-energy of all waves with respect to space 
(3.1.1). The wave structure allows both positive and 
negative spin states to be superimposed in the boson, 

and resolved on collapse; where ߮ۯ = 0 and ߮۰ is 
modulo ±π, 

 signሺ݊݅݌ݏሻ = sign ቀܾ ௗ۰ௗ௧ቁ (2) 

 signሺ݄ܿ݅ݕݐ݈݅ܽݎሻ = signሺܾ	۰ሻ (3) 

Spin states are merely options for presenting the 
same intrinsic phase difference when one of the waves is 
privileged as being the matter-state reference wave.  

 
Figure 2.  Phase evolution of a fermion’s constituents;  

Fermions (fig.2) exist as a unique solution to two 
bosons each having one wave at phase −ܾ; the 
quantization condition (“QC”). This unique solution 
identifies a point on the otherwise spherically symmetric 
and entangled bosons. Because the bosons are impulsive 
(zero width), the fermion exists as a point in spacetime, 
i.e. the fermion state has no duration. The total 
constitution of a fermion event is as follows: (a) two 
waves, ܾ = −1, at the QC; (b) two waves, ܾ ് −1, being 
vacuum terms; and (c) any other wave pairs at the 
point, also necessarily vacuum terms. 
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1.1.1 Direct interactions 

Mass-energy acts as a phase operator or modulator on 
the waves of other bosons, as the sum of the overlapping 
vacuum phase potentials ρ௡: 

 ߮୫୭ୢ୳୪ୟ୲ୣୢ = ߮ୡୟ୰୰୧ୣ୰ + ∑ ௡௡ߩ  (4) 

In terms of phase operators, wave ܈ is phase-
modulated by ߩ from vacuum bosons (eq.5, fig.3): 

܅	  =  (5) ܈	ߩ	

 
Figure 3.  ܅ = Phase modulation of ܈ by ߩ. 

It is then the modulated wave that qualifies for the 
quantization condition, with the modulation retarding 
or advancing the QC (fig.4), and therefore the 
prospective positions for the fermion, expressing action 
(3.0). 

   
Figure 4.  A volumetric plot of the propagation 
evolution of the quantization conditions of non-
excluded waves from two co-modulating bosons, of 
known mass-energy. The right source has ρ = 0.1π 
which advances the QC for the left wave on overlap, 
creating the inner ring. Conversely the left source has ρ = −0.25π which retards the QC for the right source 
(outer ring, left). This may be viewed as a longitudinal 
modulation. 

Without modulation, it would be improbable for 
fermions to form. We say that: (a) a deconstituted 
fermion requires vacuum energy to reconstitute; (b) free 
fundamental fermions are impossible; and (c) vacuum 
energy (mass-energy) prevents infinite propagation of 
bosons. Thus, a complete wavefunction must 
incorporate both the matter under consideration and 
the confining or environmental vacuum energy. 

1.1.2 Exclusion and symmetry breaking 

We require that states be uniquely identifiable, 
otherwise they cannot interact nor be resolved, and that 
any fermion event occurs only at unique spatial 
solutions to the QC. This goes further than implying the 
Pauli Exclusion Principle, to indicate that a boson’s 

wave may not engage with other waves if it has the same 
phase and source as another wave – a condition that 
occurs after every fermion event. 

This exclusion symmetry can only be broken when 
an excluded wave’s partner (in the same boson) forms a 
QC, and disentangles both waves of that boson from the 
expanding shell (fig.5, Table 1), leaving both waves of 
the other boson free to interact, where one of them was 
previously excluded (3.2). 

     
Figure 5.  The identical waves from fermion event X 
will be excluded from triggering the next quantization 
condition Y (Table 1). (a) weak-excluded until Y; 
(b) weak-broken until Z. 

 Fermion Source 

 Boson 1 Boson 2 ࢚ ࣐۲࣐ ۱࣐ ۰࣐ ۯ Description ݐ଴ ࢇ ܾ ࢇ ݀	 Fermion Event X ݐଵ ܽ + ଵݐ ܾ + ଵݐ ܽ + ଵݐ ݀ + 	ଵݐ Propagationݐଶ ܽ + ଶݐ ܾ + ଶݐ ܿ ࢊ + ࢚૛	 Symmetry-breaking

Table 1.  The corresponding sequence chart of phase values, 

showing the breaking of source exclusion symmetry. In ݐ଴..ଶ, 

excluded wave states are shown with shaded background, and 

a quantization condition is shown in bold face. At ݐଶ, wave ۲ 

interacts with an external boson, at fermion event Y (fig.5). 

1.1.3 Summary: a new picture of vacuum and fields 

Our picture presents reality as naturally-quantized, 
phase-localized vacuum energy. Its continuously-
propagating waves are impulses with specific origin and 
eventual limits. Rather than assuming continuous fields, 
we present vacuum energy as discrete spherical impulses 
carried by bosons. This has implications for the 
conventional coupling and vacuum statistics: in our 
model, the free parameters of the Standard Model (and 
others) are derived variables that approximate a 
wavefunction’s environment. Convention assumes an 
unchanging constitution of a fermion, and that some 
vacuum properties are constant, whereas our model is 
constitution-invariant because it operates on the 
fundamental information units: the waves of bosons, 
allowing fermions and the interacting elements of their 
environment to accountably change their constitution. 

This uses deterministic classical foundations, which 
imply emergent quantum-mechanical processes, 
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approximating to modern physics at sufficient scale. 
From the macroscopic viewpoint, fermions only appear 
to move or exist continuously because measurement 
may only occur at fermion events, similar to how a 
strobe effect illuminates its target. Conversely, 
conventional background vacuum energy density and its 
related statistics assume a uniform or nonlocal field 
value, and we question here the reliability of such 
statistical approximations, as having limited scope as 
effective methods that degrade at smaller scales and 
higher energies. 

For quantum computation with these foundations, 
we may regard fermions as the sharp eigenstates of a 
wave, with their partner wave being unknown: for each 
boson: ሾ−ܾ, ? ሿ. Qubits can be constructed from an 
individual boson’s non-excluded waves (where the 
resolved intrinsic state is spin), or from the entangled 
wave states of all the propagating waves from a fermion 
event (where the resolved state is a mass-energy value). 

2. Wavefunctions 

Wavefunctions require a context of vacuum energy. For 
any boson, every other boson is vacuum energy. 

2.1 One-dimensional phase examples 

These following examples (figs.6–9) are introductory 
illustrations of the model, rather than being 
representative of physicality. Our first example  shows 
two coherent massless sources ሼۯ, ۰ሽ in one 
spatial/phase dimension. Their bosons will not couple 
unless the two sources are exactly aligned so that their −ܾ states coincide exactly. Given that matter cannot be 
prepared with absolutely exact precision, the zero-width 
impulses make coupling impossible. 

 
Figure 6.  Two massless sources, 1-dimensional background. 

Next, we change boson ۰ to have mass-energy (fig.7). 
On overlap, this modulates the phase of the other boson, 
creating a phase window for coupling. Depending on 
the phase of both sources, a coupling will predictably 
either happen or not. 

 
Figure 7.  Wave B carries mass-energy (retarding A). 

If we then add some randomness to the phase of any 

boson (fig.8), the edges of the window are ‘blurred’, the 
shape of fall-off depending on the profile (e.g. uniform, 
or normal distribution) of the randomness, in the 
manner of a Dirac delta function. 

 
Figure 8.  Randomness in the phase or source position of B. 

Adding more sources gives a statistical power 
spectrum of the mass-energy (fig.9). To account for the 
environmental vacuum, we need to know its power 
spectrum, and model it as a flux of mass-energy. Indeed, 
where system confinement is not sufficient to generate a 
unique solution, extra statistical vacuum terms must be 
included. 

 
Figure 9.  More than one vacuum source, random phase. 

These examples illustrate how mass-energy, in the 
form of vacuum energy, is essential for the collapse of 
fermions, and that wave phase and (de)coherence can be 
critical to the occurrence of wave collapse. 

2.1.1 An approximation of one wave with vacuum 

Where a wave interacts with another wave of unknown 
random phase (say vacuum energy), the probability of 
interaction by phase modulation is a function of the 
vacuum energy. Where external bosons are considered 
and their phases are unknown, the phase-localized 
quantization condition is spread over the phase range as 
a probability distribution. Rather than being zero, as it 
was in the case of single wave, the independent 
probability of generating a quantization condition 
within the wave cycle is simply 

 ܲሺݔ୅ሻ =  (6) .݌

Although ݌ is the same for each wave cycle, the 
probability ௡ܲ, of an event occurring in cycle ݊, requires 
that the previous event was unsuccessful. Where ݌ ൏ 1, ௡ܲ is a series converging to zero. We define the 
probability ܳ of a null interaction  

 ܳ௡ = ܳ௡ିଵ − ௡ܲ (7) 

and the probability of a quantization condition 

௡ܲ = =	௡ିଵܳ	݌ ሺܳ௡ିଶ	݌ − ௡ܲିଵሻ. 
With ݊ = 0 for the first wave cycle, we initialize the 

(8)
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sequence for the first test: ܳ௡ழ଴ = 1	௡ܲழ଴ = 0 

Eqs. 6-8 (fig.10) simplify to  

 ௡ܲ = ܳ௡	௡;݌ = ሺ1 −  ሻ௡ (10)݌

The probability of generating a quantization condition 
in the interval between source and cycle ݊ tends to 1 
with increasing ݊: 

଴ܲ..௡ = ෍ ሺܳ௠ିଶ	݌ − ௠ܲିଵሻ௡
௠ୀ଴  

 
Figure 10.  Probability P of a quantization condition. 

The radial phase is trivial: 

ݎ  = ߮୅ = ୅ݔ + 2π݊ (12) 

When two waves of a boson are available for the 
quantization condition, the solutions for ݔ୅,  are ۰ݔ
superimposed: interleaved and ordered. 

2.2 Euclidean approximation 

When one wave is considered, the nondimensional 
probability of achieving the quantization condition per 
phase cycle is simply ݌ (eqs.6–11). For an expanding 
sphere in vacuum, the independent radial form for one 
cycle approximates at large integer values of ݎ to ܲሺݎሻ = 1 − ሺ1 − ሻௗ௏ሺ௥ሻௗ௥݌ 	 

where ݌ is the fraction of radial phase that is 
available for the quantization condition, depending on 
vacuum energy density, and ܸሺݎሻ is the volume of space 
enclosed by the previous cycle at radius ݎ: ܸ݀ሺݎሻ݀ݎ = 4π3 ሺݎଷ − ሺݎ − 1ሻଷሻ	= ߨ4 ൬ݎଶ − ݎ + 13൰ 

This approximation is not suited to changes of 
conditions, because it assumes a uniform probability 
over each successive 1-unit-thick crust of a hollow 
sphere. The history-dependent radial form of 
probability distribution ுܲ (incorporating the failure of 
previous events, eq.8, and the remaining null term 
available to infinity) tends to zero for infinite ݎ: 

 ுܲሺݎሻ = ௥݌ ൬1 − ሺ1 − ሻ೏ೇሺೝሻ೏ೝ݌ ൰ (15) 

න ுܲሺݎሻஶ
଴ ݎ݀ = 1 

The total area under the curve, for 0 ൏ ݎ ൏ ∞ is 1, 
so it is pre-normalized, and the function increases from 
near-zero to a maximum value (the zone of asymptotic 
freedom), then tails off to follow ௡ܲ (eq.8), a 
distribution that describes a tendency to collapse 
fermions at a given distance (the zone of confinement). 
This kind of function provides essential clues for the 
distances that various types of particles tend to 
maintain, in given vacuum conditions. Fig.11 shows the 
first 400,000 terms for ݌ = 10ିହ: for ݎ ൐ 64, the series 
tends to zero at infinite ݎ. For small ݌, approximate 
values of ݎ at respective percentiles {5, 50, 95} of ׬ ுܲሺݎሻ 
are: ݎ = 	 ൜		5.129݌ 	, ݌6.931 	, ݌29.96 		ൠ 

  
Figure 11.  Plot of ுܲሺݎሻ for ݌ = 10ିହ, eq.15. 

2.3 Vacuum 

Approximating this process for discrete sources to 
statistics, we may use standard terminology for QM, and 
assign each modulator as an amplitude (factor) 
function in the probability distribution. Where this 
becomes impractical, or vacuum energy is sufficiently 
de-coherent or random, a power spectrum of flux 
(where positive and negative potentials maintain 
separate amplitude axes; complex) replaces individual 
terms, to represent a conventional field. 

When applied to larger-scale dynamics, the higher 
the energy of a wave, the more likely a wave will 
collapse; the effect of mass-energy on phase modulation 
and wave collapse is analogous to the Higgs Mechanism 
for intrinsic mass, where bosons carrying large phase 
potentials are less likely to radiate far in a degenerate 
state, because they are prone to being collapsed by a 
wider variety of energies and phases of environmental 
bosons (vacuum energy). 

2.3.1 Unique solvability and derived background space 

For a wavefunction to be fully quantifiable, we must 
understand the role of external instances of vacuum 
energy on a system. These instances may have almost 
zero mass-energy, but their presence will create unique 
solutions in a degenerate wavefunction, and allow more 
tiers of residuals, each of which helps create a 

(9)

 (11)

(13)

(14)

(16)

(17)
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macroscopic tier of scale (physical hierarchy). We 
believe that the geometric structure of background space 
is not fundamental, but is instead derived from (and 
limited by) the uniqueness of fermion solutions, 
allowing lower-dimension spaces in the simplest of 
interactions where few bosons overlap. As a boson 
grows, there is a transition from simple one-
dimensional to three-dimensional (four-boson) phase 
solutions, after which it is safe to assume flat Euclidean 
space. Each causal introduction of a boson will partition 
its wavefunction, or add a coupling term to the 
aggregated wavefunction. 

This creates a sub-structure of trivial solutions at the 
highest energies and smallest scales, in cases where there 
are insufficient instances of vacuum energy flux to 
require a full (3, –1) metric. Although trivial, it depends 
heavily on phase coherence, and therefore has high 
deviation from the statistical expectation values when 
preparation conditions are unknown. We speculate that 
this may be a ‘phase transition’ where the three-
dimensionality of space may emerge [but as yet this 
proposition lacks the required geometric working]. 

2.3.2 Unique 4-boson solutions in Minkowski spacetime 

For any given boson shell, there are two active waves, 
whose relative phase determines a phase modulation 
value that is applied to the phase of all other overlapping 
waves. In Minkowski spacetime, two overlapping shells 
are not sufficient to create a unique solution; the 
circular solutions are not unique points. Adding a 
further overlapping shell implies up to two point 
solutions, again non-unique, so a fourth overlapping 
shell is needed to create a unique solution, but with each 
shell overlap, the probability of generating a ‘hit’ with a 
QC is diminished. 

2.3.3 Simplifying the vacuum 

We may model the simpler interactions, by assuming an 
exact preparation for the two main interacting bosons 
for which candidate solutions may be found, by 
applying a statistical evaluation of the vacuum energy 
flux. This has two effects on solutions: Firstly, the 
modulation of these vacuum bosons will enable more 
solutions for the known bosons; secondly, the vacuum 
bosons can enable uniqueness in existing solutions, even 
if the vacuum bosons have zero mass-energy. The latter 
is ideal for approximations, reducing the extra terms’ 
contributions to an expectation value determined by the 
modulations of the known bosons (2.1). These 
approximations generalize the vacuum energy into 
anisotropic fields, to allow flux gradients (3.1) to 
accurately affect the wavefunctions. 

3. Forces 

Fundamentally, boson propagation is scalar; direction is 
not intrinsically encoded in fundamental boson, so any 
vector-like directional attributes are emergent geometric 
expressions of the positions of solutions, aggregated as 
momentum. We identify two possible mechanisms of 
force: one is a direct modulation effect, which is the 
displacement that a vacuum modulation imparts on a 
solution. Although this affects individual solutions, we 
find that it is approximately cancelled out by the fact 
that the modulation prevent a solution in the same wave 
cycle as the non-modulated case [there is detail in the 
exceptions, which should be explored further]. The 
other mechanism is a statistical tendency of a conserved 
fermion’s bosons to collapse towards the sources of 
vacuum bosons. We place significance on the latter. 

3.1 Gravitational interactions 

We describe gravity as an effect of the variation of the 
density of vacuum energy flux over space, making it an 
emergent statistic of the anisotropic environmental 
vacuum. The effect is that waves are more likely to 
collapse in the direction of boson sources, especially 
where many fermions interact with unconfined 
(radiated) vacuum currents. There are two 
considerations that affect what we might regard as a 
stable gravitational ‘field’ near a body: (a) the interaction 
of other vacuum energy, (b) the self-interaction of the 
field. 

3.1.1 The flux gradient created by vacuum 

We calculate the change of flux density, not directly 
from the geometry of an expanding sphere (which 
would yield no change in the density of impulses), but 
by the interaction of the flux with other environmental 
vacuum energy, which collapses quanta of the flux in 
proportion to the increase in volume per unit radius, 
from (eq.15), ܸ݀ሺݎሻ݀ݎ = ߨ4 ൬ݎଶ − ݎ + 13൰ 

which can be rewritten as “the expected probability of a 
test particle interacting with the body’s field”, ܲሺݎ, ܾሻ݀ݎ = ଶݎ௕݌	ߨ4 − ݎ + 1 3⁄  

where ݌௕ is the radiated mass-energy of the body. The 
mean deflection ∇ is the probability that the test particle 
will interact with the body’s flux ݌௕, rather than with the 
environmental vacuum flux ݌௩, scaled by the mean 
expected vector ∇௕ between particle events where the 
particle interacts with the body’s bosons: ∇ሺݎ, ܾ, ሻݒ 	= ∇௕ ଶݎ௕݌௩݌	ߨ4 − ݎ + 1 3⁄  

The resulting force is comparable with other classical 
formulations; we have encoded the gravitational 

(18)

(19)

(20)
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constant ܩ into the mass-energy terms. Extra terms −ݎ + 1 3⁄  are within the approximation of eq.18 (and a 
better approximation is likely to result from working 
this backwards). Classical momentum is realised on 
particles by assuming they have internal kinematics that 
is emergent in the model without special consideration, 
as a regular system of waves. 

Interestingly, the scaling of probability, resulting 
from this gradient of collapse, is not affected by the mass 
of the satellite body, unless it is incorporated into  ∇௕, 
though we may calculate the reciprocal force by 
switching the roles of the bodies in the approximation. 
It also scales well to the collapse interval, making it 
almost independent of the constitution of the satellite. 
This means we can regard items of interest as ‘test 
particles’ in the ‘field’. 

We believe the usefulness of this approximation is 
limited to illustrating a possible origin of gravity, and to 
be less useful than running the model itself, where the 
gravitational effects are inherently present in the 
process, rather than computed separately. We lose 
fidelity from the physical model by approximating the 
actual bosons as a power spectrum of vacuum energy, 
and we lose even more fidelity by assuming the power 
spectrum as a scalar flux term. We also lose the phase 
coherence of any radiation, and the quantum detail for 
individual wave collapses. 

3.1.2 Self-interaction (macroscopic) 

We can assume that, in a massive body, a proportion of 
radiated bosons will interact with other quanta of 
radiation from the same body, dissipating the field with 
increasing radius, and generating higher-order fields in 
a chaotic system that requires approximation. This field 
is likely to comprise bosons of low mass-energy; the 
lighter of the fermion constituents, because they are 
most likely to propagate large distances. Near to the 
body, gravitation is likely to be indistinguishable from 
the interactions that conserve the body’s constitution. 
Far from the body, self-interaction quickly loses 
relevance, as the increasing surface area of the boson 
quickly exposes it to a more significant probability of 
collapse from vacuum energy. We will leave this aspect 
for further study, e.g. the detail of cosmological 
extremes like black holes. 

3.1.3 Summary of gravitational interactions 

These deflections give a directional element to what is 
otherwise just a ‘field’ comprising scalar waves. Its 
aggregated magnitude, expressed as classical particle 
momentum, is small compared to an equivalent effect 
from the phase modulation from the interacting parts of 
the flux. The nature of the resulting force is different 
from the direct interactions of the bosons themselves. 
This means we will not find a gravity-carrying boson; 

instead we must look to environmental vacuum 
statistics to quantify the effect of gravity. 

3.2 Charges and their forces 

Charge is the interaction of a boson’s positive or 
negative phase modulation with the environmental 
vacuum energy. Where one of a fermion’s waves has 
already interacted with vacuum and been taken off-shell 
(1.1.2), the remaining on-shell waves are guaranteed to 
have only one sign of modulation ൛++, – – ൟ present, in 
contrast to a shell that has not yet interacted which has 
one of ൛++, +–, –+, – – ൟ modulations present. Shells 
having mixed sign are neutrally charged; those with one 
sign carry charge. 

Each fermion therefore has two charge values: the 
initial charge on two bosons, and the residual charge 
on the boson that remains after its first interaction. We 
map the initial charge to the weak interaction, and the 
residual charge to the electric interaction. The radiation 
of a fermion source therefore has two wavefunctions, 
partitioned by source and interaction events. The 
residual wavefunction is a choice between two possible 
wavefunctions, depending on which boson interacts first 
as a result of the initial wavefunction. This choice is 
generally unobserved because it is part of the process that 
preserves the constitution of conserved fermions. 
However, we can detect weak interactions when they 
change the constitution of an otherwise conserved 
fermion: a change in momentum, effects from the 
change in constitution of future fermions, or the sign of 
wave properties like chirality. The strong force has 
different a origin, being a result of the double-linking 
confinement structures [6,7] found in QCD (5.2). 

3.2.1 Attraction and repulsion 

This requires that interchangeable ‘lighter’ bosons are 
available from vacuum, to supply the persistent heavy 
boson with a partner. Field line vectors are a sum of the 
source radial vectors, scaled by their probabilities. In 
future works, we intend to reconcile charge structures 
with established literature. 

3.3 Summary of forces 

In this model, the forces of the Standard Model are an 
effect of flux gradients on the probability of wave 
collapse. Rather than being separate and specific forces 
acting independently on classical bodies, the forces are 
intrinsically present in the model, without any need for 
specific mathematical treatment to generate or isolate 
them. Indeed, to rediscover these forces, we have 
explored the observable displacement effects of 
organised structured sources (classical bodies) on test 
particles and micro-systems, in comparison with the 
same systems in background vacuum. We stress here 
that these forces are emergent expressions of the 
fundamental propagation and collapse, and are Lorentz-
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invariant, whereas the separated fields are not 
translation-symmetric. 

4. Physical Structures 

Author’s Note: It is customary for foundational works to 
attempt to explain grand unification and every aspect of 
the Standard Model. Although these remain our aims, 
we believe it is too soon to declare success in this regard, 
as our researches are not yet sufficiently exhaustive, nor 
are they quantitatively calibrated to experimental 
physics. We provide this section as guidance for further 
work. 

4.1 Particles 

Conserved fermions are those that are similarly re-
constituted over time: their constituent bosons ‘bounce’ 
off vacuum energy at virtual anti-fermions, and return 
to create a mutual coupling point for the next fermion 
event. Such fermions have classical momentum as an 
aggregation of displacements. When this cycle is 
interrupted (rather than simply nudged) by other 
bosons, fermions change their constitution or are 
annihilated. 

A truly free fundamental fermion, i.e. the sole 
occupant of a universe without vacuum energy, can 
never collapse, for two reasons: (a) a single source can 
only contribute one term, of the two required to 
constitute a further fermion event, because of exclusion 
(1.1.2); and (b) there is no vacuum energy, to provide 
the second term. However, we can model a free fermion 
with the addition of environmental vacuum energy. 

A composite structure is one where its fermions 
depend on each others’ constituents to remain 
conserved. This means that some of the fermions’ 
energy is confined rather than emitted anonymously 
into vacuum. 

4.1.1 Fundamental fermions 

Our model defines a minimum constitution for 
fermions, essentially two bosons, with as many 
supplemental bosons as required to create a unique 
solution for a quantization condition. When we 
examine the particles identified by the Standard Model 
in this context, we find opportunity to define quarks 
and leptons (both electron and neutrino-type) in these 
new terms, rather than just assume they are 
fundamentally indivisible. This necessarily admits 
instances of discrete vacuum energy as part of the 
constitution, whether coherent and confined in a 
composite, or incidental to the system. For example, 
neutrinos might be a combination of very light bosons, 
quarks a combination of heavy bosons, and electron-
type leptons are a mix of the two boson types. 

4.1.2 Neutrinos 

Our neutrinos, being fermions, are the combination of 
two very light bosons, which needn’t be massless. The 
tiny mass of the boson constituents allows them to 
propagate great distances, and their part in interactions 
is generally limited to providing a unique solution for 
heavier bosons, rather than the behavior of massive 
bosons which tend to perpetuate the conserved particles 
that collapse near their source. The mechanism for 
oscillations is a vacuum interaction. 

4.2 Antimatter 

As with Dirac images of the fermion, the vacuum 
constituents of a fermion would form anti-matter if they 
later couple as fermions. The cyclic process of matter 
conservation involves a fermion’s bosons each finding a 
fermionic solution with vacuum, before returning for 
re-constitution. As a process, this creates a ‘polarized 
vacuum’ where idempotent conserved ±fermions 
(matter, or antimatter, whichever has more mass-
energy), with their corresponding one-off separated ∓half-fermion instances as the reflection points. 

5. Predictions and Applications 

5.1 Description of a black hole 

Our model can be applied to the scenario of a black 
hole, without any special treatment: the same process of 
fermion reconstitution is at work in a black hole, as is at 
work in the low energy environments that we are more 
familiar with. The Schwarzschild radius is not 
privileged, but the classical effects are achieved by 
quantum means; our event horizon is a fuzzy 
probabilistic boundary. From the outside of a black 
hole, as we approach the event horizon, the vacuum 
energy density increases, making bosons collapse more 
readily into fermions (1.1.1, 2.1, 3.1), with a greater 
proportion of fermions failing to reconstitute in a 
conserved manner from one instance to the next. 

5.1.1 Evaporation, probabilistic boundary 

The event horizon itself does not have any special 
properties. The event horizon can be assigned to be a 
radius from which there is a significant confidence that 
matter cannot escape. Indeed, it is the large-scale result 
of many interactions within a zone where two relevant 
variables (both being classical generalizations) are high: 
vacuum energy density is large enough to prevent bosons 
propagating far, and a gradient of vacuum energy density 
implies a directional preference for collapse. There are 
no limits to the vacuum energy density; many boson 
shells may occupy a length or volume that is less than a 
fundamental wavelength in size, but interaction 
opportunities per boson are limited. 

Although our model was not designed around 
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solutions to problems related to black holes, we find it 
presents a good model for some currently-favored ideas, 
such as black hole evaporation[Bekenstein–Hawking], without 
the problems of classical gravitation. Our constitution 
for a fermion requires that at least two bosons leave each 
fermion event. In low-energy environments, fermions 
might typically re-constitute after their bosons ‘bounce’ 
off the vacuum. This is in contrast with the dense 
environment of a black hole, where higher energy 
densities will increase the probability that fermions will 
not reconstitute themselves because their bosons pair up 
with other vacuum waves, never to return to their 
original encoding. If this occurs near the event horizon 
zone, then some energy may probabilistically escape. 

This model does not suffer ‘information paradox’ 
problems, because our matter is encoded as separate 
bosons, and even within the dense body of a black hole, 
these bosons interact as normal. However, the encoding 
of fermions entering a black hole is likely to be 
significantly scrambled by the interactions within. 

5.2 Mass variation of quarks and gluons 

Gluons are the confined energy of hadrons: these 
bosons, having significant mass-energy, collapse readily 
at short distances, each quark coupling to both other 
members of the hadron (6 bosons), with residuals 
providing larger-scale currents at significantly lower 
mass-energies. There are nine components in total, for 
the six bosons. For each pair of the bosons leaving a 
quark, one of the bosons (say, the anti-color) has two 
wavefunctions, partitioned by the symmetry-breaking 
interaction of the other boson, which makes both its 
waves available for interaction. Where two 
wavefunctions are concurrent for any two bosons on 
their sphere shell, the probability of interaction depends 
on the phase coherence of their respective interaction 
windows. Where the boson energies are near-equal, the 
maximum probability (where windows are non-
overlapping) is twice that of the minimum probability 
(where windows overlap), and where boson energies are 
unequal, the range of probability is narrower, with the 
smaller mass-energy value seeming to be an error on the 
larger value. For a wavefunction having only a single 
boson with both waves active, their interaction windows 
are non-overlapping, and conversely, the windows of a 
pair of bosons before the symmetry break may overlap. 
Aggregating such distributions from masses or initial 
phase values should yield typical ranges found in 
experiment, and vice versa. The phase coherence of the 
wavefunctions gives directionality to the probabilities, 
particularly when sources are close. 

5.3 Radial occlusion effect; EPR variants 

Consider a large body at radius ݎ from a radiating 
source: the large body should collapse some of the waves 
that would otherwise have radiated beyond the system. 

Given that we think that all mass-energy values are very 
small relative to the highest possible value of mass-
energy that a boson may carry, it is likely that the 
occlusion effect is significantly smaller than the direct 
exchanges of bosons that occur between the two bodies; 
a squared order smaller than the direct modulation 
interaction (3.1). However, it should be testable. 

5.4 Confinement energy and momentum 

The model allows composite particles to gain or lose 
their confined energy, but this is not necessarily in 
proportion to their classical momentum; it is possible 
for a system to lose confinement energy while gaining 
momentum, though strictly speaking, this also implies a 
change in the constitution of the composite particle. 

5.5 Example exotic particle structures* 

A three-fermion singlet may be constructed, where each 
fermion couples to both the other fermions (5.2) within 1ݎ wavelength, and is equivalent to a very compact 
hadron. This composite travels at light speed without 
residuals, and without external vacuum interaction; 
indeed it must avoid vacuum energy (within 2π3/ݎ of 
its axis) to remain conserved, given that its ݌ = 0.5. 

5.6 Fast guided information transport*  

It should be possible to transport information towards a 
recipient at a density (several orders of magnitude) 
greater than the fundamental density, if the receiver 
prepares the vacuum with phase-coherent periodic 
emissions. If the source is able to generate a boson 
having a wave phase slightly de-synchronised from the 
target, but within the mass-energy modulation window 
of the target’s coherent signal, then the information will 
propagate to the target. An analogy for this mechanism 
is a ‘domino run on a conveyor belt’, where a target 
periodically drops dominos onto a conveyor belt that is 
moving away from it, and a downstream source tips a 
domino to send a signal. Many such signals could be 
sent in parallel, using non-overlapping phase windows, 
provided there is no interference (which would cause 
cross-talk). 

Although this signalling method could work at near-
fundamental scale if the machinery could be built, at a 
scale significantly smaller than typical electron 
interactions, it has been mentioned only as a curiosity, 
because it has many problems that prevent it being 
practical: (a) It is inefficient over distance; 
(b) Information propagation collapses the carrier signal; 
(c) The sender of the information has no way of 
knowing if a carrier signal is available for the complete 
propagation path, so this is suited only to short 
distances, and must be implemented with a full 
protocol; (d) It is prone to interference from oppositely-
modulated bosons having higher energy than the 
information, shifting the signal phase out of the 
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modulation window of the carrier signal, and losing the 
information to vacuum. 

6. Further Work 

6.1 Disproof and viable alternatives 

Reasonable alternatives weaken the model, so we have 
identified these to open it to challenge. 
6.1.1.1 We assume the quantization condition (1.0) 

occurs only at −ܾ, because we use it as an 
absolute phase position in the algebra that has 
special privileged physical meaning [1, 3–7]. 
Viable alternatives may be: (a) at any point 
where phases are equal, or (b) +ܾ. 

6.1.1.2 We assume that at the point at which two boson 
shells overlap, phase modulation spontaneously 
sweeps over the phase range, to include any 
swept quantization conditions. The alternative 
view, of not including the phase range, severely 
reduces amplitudes. 

6.2 Problems 

Here we list aspects of the model that are weak, poorly 
understood, or worthy of further work: 
6.2.1.1 What is the fundamental scale of this model, 

which is not yet calibrated to standard length. 
We expect a scale to emerge from the solutions 
to composite configurations. 

6.2.1.2 A description of harmonic oscillators and black 
bodies (QED). We expect ‘sparse sampling’ to 
provide the mechanism. 

6.2.1.3 Is there a process that creates bosons of a given 
mass-energy, without assuming a big-bang? 

6.2.1.4 Verify that different vacuum environments 
exist in the universe, and investigate the 
possibility that an increase in vacuum flux for 
an observer may cause their own confinement 
and vacuum interactions to increase in 
frequency, red-shifting the surroundings. 

6.2.1.5 (a) Verify that 3D background space emerges 
from scalar phases (2.3.1), where four or more 
bosons have common geometric solutions. 
(b) When less than four sources overlap, 
unique QC solutions may exist in lower-
dimension space (2.1). Examine the resulting 
ontologies. 

6.2.1.6 Do ‘flavors/generations’ correspond to the 
number of bosons required to create a unique 
solution for a fermion? 

6.2.1.7 Is energy conserved or mixed for all bosons 
passing through a fermion event? 

6.2.1.8 Investigate the modulation properties of matter 
and anti-matter (4.2), for any imbalance or 
cascade effect. 

6.2.1.9 Investigate whether non-persistent fermions 
(4.2) are an adequate description of ‘dark 
matter’. 

6.2.1.10 Computability of the deterministic aspects of 
the model, and sufficient approximation in 
statistics. 

6.2.1.11 Operational calculus on approximations of 
vacuum interactions (2.2), into ݁௡ format. 

Afterword 

We are hopeful that the model outlined in this work 
describes useful symmetries. First is the symmetry of 
matter and vacuum states (1.0) on a common axis [3–7], 
with simple physical rules that encapsulate important 
entity and exclusion principles. Our model’s intrinsic 
inclusion of forces (3.3), and their emergence without 
special treatment, strongly suggests that our model has a 
force-unifying symmetry in its basic process. Further, 
we feel that the constitution-invariance of the process 
(1.1.3), free of renormalization and singularity problems 
and effective energy limits, is worthy of further study. 
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